

Who’s my President?
Building an image classification model with ​Apache Spark​ Keras

University of California, Santa Barbara

PSTAT 194, Winter Quarter 2018
Professor Adam Tashman

March 19, 2018

Team Spotted Dogfish
Jason Freeberg, Samantha Lee, Timothy Nguyen

Table of Contents

Abstract 2

Introduction 2
Convolutional Neural Networks 2
Transfer Learning 3
Image Augmentation 3

Data Summary 4
Data source 4
Data attributes 4

Methods 4
Transfer Learning from Various Source Models 4
Training with Various Dataset Sizes and Augmentations 5

Conclusions 6

Past Difficulties and Future Work 7
Difficulties 7
Future Work 7

References 7
Thank Yous 8

1

Abstract
Our team sought to build an image classifier for the past four United States Presidents (Bill
Clinton, George W. Bush, Barack Obama, and Donald Trump). Using the industry-standard
technique known as transfer learning, we compared the performance of three Convolutional
Neural Networks,​ ​Oxford University’s VGG-16, Microsoft’s ResNet 50, and Google’s Inception
V3 after fine tuning. We also investigated various data preparation methods, including training
on multiple training sets and the effects of augmenting the training photos, to determine their
effects on model performance.

The results determined VGG-16 as the most efficient model, and we completed the final steps
from this source model. We discovered that having a larger training set will lead to better results,
while augmenting the data can lead to better accuracy. Our models are evaluated to show the
improvements of data preprocessing over the corresponding baseline neural network on image
classification.

Introduction
Image classification is the task of assigning an input image a label from a fixed set of possible
labels. This process includes systematically extracting information from the pixels of a labeled
image, learning from the patterns across all labeled images, and using those patterns to
compute a probability that a new, unlabeled image belongs to the labels. This field of research
has far reaching applications in consumer software, manufacturing, defense, and many other
industries.

Convolutional Neural Networks
A common technique for building these machine learning
models is to use a Convolutional Neural Network (CNN).
These models have proven to be excellent at extracting
complex patterns from training sets of images. The
model’s power comes from recursively passing
convolution functions, such as Gaussian blurs or Sobel
edge detectors, over the images. Every application of
these functions reduces the output data by one pixel
around the entire perimeter. So by recursively applying
these functions until we are left with single-pixel outputs, we have abstracted away the location
and context of the data. This leaves us with a powerful but un-interpretable representation of the
image data. Please see the image showing a convolution function passing over an image. Note
that the input image is 5x5 pixels, while the output is 3x3 pixels.

2

Transfer Learning
The process of training a convolutional neural network from scratch is a time consuming and
computationally intensive process. A common work-around for this hurdle is the process of
transfer learning. This technique leverages a CNN that has already been trained to classify a

wide array of image labels. Since the CNN has
already been tuned to efficiently extract features
from an image, we simply replace the last layer of
the network with a new decision-maker that is
specific to the developer’s classification problem.
This “decision layer” need not be a neural network!
The decision layer can be a typical classification
model such as Logistic Regression, a SVM, etc.

These pre-trained models used in transfer learning
are typically contributed to open source projects by
large organizations, companies, and universities.
Each of these neural networks come in a variety of

depth, so the developer can select the most appropriate for their specific requirements.

Image Augmentation
Neural Networks are far more performant than comparable machine learning algorithms…
assuming that training data is plentiful. However in image classification problems, training data
can be a rare resource. A common
workaround for this problem is to generate
more training images from the existing
images. The compilation of photos on the
right shows how multiple images can be
generated from the same, base image.

Common transformations are to rotate,
sheer, blur, and flip the images. Other
operations can act on the color scheme, by
brightening, darkening, or inverting the
pixels. All these operations can be applied
randomly together.

Training a CNN on extra, augmented data
exposes the model to a more varied dataset. In our project, we explored the effect these
transformations have on the accuracy of the Neural Network.

3

Data Summary

Data source
Our dataset is curated from Google, with a total of roughly 800 images and 4 classes. We
collected the images using a Firefox browser plugin to download the image results for each
president. We then combed through the image files to remove any obvious duplicates or
corrupted files. Images from the same event (press conferences, campaign rallies) were left in
the dataset. The images are of varying color schemes, perspectives, and focal points. In the
sample below, one can gauge the high variance of the dataset.

Data attributes
The observations of our dataset are individual JPEG image files.
Each image is represented as a three-dimensional array of
integers ranging from 0 to 255, where each integer represents an
individual pixel's intensity. The color channels of red, blue, and
green correspond to the three dimensions. The values in each of
the three arrays correspond to the intensity of each of the colors (0
meaning not present, and 255 meaning fully present). The
animation shown to the right visualizes the process of mapping the
pixels to integers. The process shown is repeated for each of the
three color channels. Any non-JPEG images in our dataset were
converted to JPEG format using the native file converter in Mac OS.

Methods

Transfer Learning from Various Source Models
Typically, image recognition through deep learning requires a great deal of data points. Because
we manually gathered our data, it was not feasible to amass enough images to train a decent
neural network from scratch. We turned to transfer learning to resolve this issue. We chose to
compare results from the three most popular pretrained image recognition models: ResNet50 by
Microsoft, VGG-16 by Oxford University, and InceptionV3 by Google. These models have all
been trained on ImageNet, the largest publicly available dataset comprised of labeled images.

4

Our transfer learning process starts with loading a source model via the Keras ​Applications​ API
and freezing its layers, making the parameters for those layers untrainable. Then, we added a
fully connected layer with ReLu activation followed by a dropout layer to curb overfitting. Finally,
we added a fully connected output layer with softmax activation and 4 nodes to accommodate
the 4 presidents we wish to predict among.

We employed stratified sampling to split our data into 600 and 200 images for the train and test
sets, respectively. We fit the models over the course of 30 epochs before evaluating them. The
comparison between the models is displayed in Table 1.

Table 1: Source Model Comparison

Source
Model

Parameters
in source

model

Trainable
Parameters
in complete

model

Source
model load

time (s)

Complete
model train

time
(minutes)

Validation
Accuracy

VGG-16 14,714,688 6,423,812 1.01 12.276 0.760

Inception V3 21,802,784 13,108,484 12.41 12.089 0.440

ResNet-50 23,587,712 525,572 11.64 12.040 0.260

The factors we can considered were the time to load into the environment, time to train on the
data, and validation accuracy on the final epoch. Please note that we trained our models using a
GPU-configured EC2 instance provided by AWS, so our runtimes are low relative to the
intensive computations being performed. We can see that all of the source models resulted in
similar training times, so we focused on the other metrics. VGG-16 was the best fit model,
having achieved a validation accuracy much higher than its more complicated counterparts.
Additionally, it took the least amount of time to load due to its relatively simple architecture. We
continued the rest of our project using only VGG-16.

Training with Various Dataset Sizes and Augmentations
Our next step was investigating the effects of image augmentation and training set size on
model performance. We trained the models on sets of 100, 200, 400, and 600 images, all of
which had balanced amounts of classes. We also trained each model with and without image
augmentations applied to the training sets to give us a total of 8 models to compare. Table 2
shows the training time, validation accuracy, and validation loss of all the tested training set
sizes. Our loss function for model training was classification cross-entropy.

5

Table 2: Performance of VGG-16
 Training Images

(per class)
Train time
(minutes)

Validation
Accuracy

Validation
Loss

Augmented

25 4.58 0.580 1.280

50 5.30 0.620 1.306

100 8.32 0.710 1.003

150 12.4 0.760 0.761

Not
Augmented

25 4.47 0.345 8.801

50 5.44 0.570 1.343

100 6.82 0.690 1.067

150 9.76 0.760 0.8935

There is a clear improvement in accuracy with a larger training set, for both image cases, even
with the longer training time. The augmented images also performed better in the testing, with a
significantly lower validation loss.

Conclusions
The process of deep learning with images excels due to the extensive possibilities with data
preprocessing and modeling. VGG-16, despite its drawbacks in training time, has shown to be a
powerful source model using in transfer learning in the industry today. In our model comparison,
VGG-16 was the quickest to load and had the highest validation accuracy. ​This is as expected,
since VGG-16 is characterized by lesser layers and greater depth in the neural network to prove
better results. Validation accuracy is also discernibly better with augmentations to the data and
more points in the training data. Figure 3 is a visual comparison of the different models we
implemented with these variant cases. We have reason to conclude that training set size and
certain augmentations are important in creating a quality model in image classification.

Figure 3: Model Accuracy

6

Past Difficulties and Future Work

Difficulties
The majority of our difficulties stemmed from development and operations work: principally from
our attempts to integrate standard deep-learning Python libraries such as Keras or Tensorflow
with Apache Spark. It is possible to combine the two tools through the tensorframes and
spark-deep-learning libraries, but correctly configuring those libraries is a very time-consuming
process. The bulk of our efforts in the first two weeks were spent configuring our local and
remote environments.

Once the libraries were configured, our team was limited by the computing power of our
hardware. Although the CNN featurizer was trained, training our classifiers was still a long
process due to the fact that each observation contains a massive amount of data. Unlike a
typical classification data with simple tabular data, every observation in this project was a large
JPEG image file. Spark is typically used on a cluster... however we were using Spark’s local
compute setting, so the communication costs between the master and the executors was not
worthwhile.

Finally, our team abandoned Spark altogether in favor of using Keras on a GPU-configured EC2
instance on Amazon Web Services. The results and methods detailed in this report are all from
that final attempt.

Future Work
If time had allowed, we would have investigated the performance of a model transfer learned
from a source model trained on a facial images rather than the less focused scope of ImageNet.

7

References
1. Apache Spark v. 2.2.0

a. https://spark.apache.org/
2. Tensorframes v. 0.2.9

a. https://github.com/databricks/tensorframes
3. spark-deep-learning v. 0.2.0

a. https://github.com/databricks/spark-deep-learning
4. Mozilla Firefox Plugin

a. https://addons.mozilla.org/en-US/firefox/addon/google-images-downloader/
5. Keras

a. https://keras.io/applications/
6. Tensorflow

a. https://www.tensorflow.org/
7. Domino Data Labs Project

a. https://trial.dominodatalab.com/u/jasonfreeberg/spotted_dogfish_dev/browse
8. Pre-trained Model Architectures

a. https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xcept
ion-keras/

9. Facial Expression Recognition using Convolutional Neural Networks: State of the Art
a. https://arxiv.org/pdf/1612.02903.pdf

Thank Yous
1. The man and legend that is ​Adam Tashman​.
2. UC Santa Barbara’s Statistic and Applied Probability Department for allowing our team

to pilot this course.
3. Lukas Biewald of CrowdFlower for hosting a deep learning workshop from which we

learned how to improve our computer vision models.
4. Domino Data Labs for letting us wrack up an enormous AWS bill.

8

https://spark.apache.org/
https://github.com/databricks/tensorframes
https://github.com/databricks/spark-deep-learning
https://addons.mozilla.org/en-US/firefox/addon/google-images-downloader/
https://keras.io/applications/
https://trial.dominodatalab.com/u/jasonfreeberg/spotted_dogfish_dev/browse
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://arxiv.org/pdf/1612.02903.pdf
https://www.linkedin.com/in/adam-p-tashman-phd-prm-93a82722/

