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Abstract 
Our team sought to build an image classifier for the past four United States Presidents (Bill 
Clinton, George W. Bush, Barack Obama, and Donald Trump). Using the industry-standard 
technique known as transfer learning, we compared the performance of three Convolutional 
Neural Networks,​ ​Oxford University’s VGG-16, Microsoft’s ResNet 50, and Google’s Inception 
V3 after fine tuning. We also investigated various data preparation methods, including training 
on multiple training sets and the effects of augmenting the training photos, to determine their 
effects on model performance. 
 
The results determined VGG-16 as the most efficient model, and we completed the final steps 
from this source model. We discovered that having a larger training set will lead to better results, 
while augmenting the data can lead to better accuracy. Our models are evaluated to show the 
improvements of data preprocessing over the corresponding baseline neural network on image 
classification.  

Introduction 
Image classification is the task of assigning an input image a label from a fixed set of possible 
labels. This process includes systematically extracting information from the pixels of a labeled 
image, learning from the patterns across all labeled images, and using those patterns to 
compute a probability that a new, unlabeled image belongs to the labels. This field of research 
has far reaching applications in consumer software, manufacturing, defense, and many other 
industries. 

Convolutional Neural Networks 
A common technique for building these machine learning 
models is to use a Convolutional Neural Network (CNN). 
These models have proven to be excellent at extracting 
complex patterns from training sets of images. The 
model’s power comes from recursively passing 
convolution functions, such as Gaussian blurs or Sobel 
edge detectors, over the images. Every application of 
these functions reduces the output data by one pixel 
around the entire perimeter. So by recursively applying 
these functions until we are left with single-pixel outputs, we have abstracted away the location 
and context of the data. This leaves us with a powerful but un-interpretable representation of the 
image data. Please see the image showing a convolution function passing over an image. Note 
that the input image is 5x5 pixels, while the output is 3x3 pixels. 
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Transfer Learning 
The process of training a convolutional neural network from scratch is a time consuming and 
computationally intensive process. A common work-around for this hurdle is the process of 
transfer learning. This technique leverages a CNN that has already been trained to classify a 

wide array of image labels. Since the CNN has 
already been tuned to efficiently extract features 
from an image, we simply replace the last layer of 
the network with a new decision-maker that is 
specific to the developer’s classification problem. 
This “decision layer” need not be a neural network! 
The decision layer can be a typical classification 
model such as Logistic Regression, a SVM, etc. 
 
These pre-trained models used in transfer learning 
are typically contributed to open source projects by 
large organizations, companies, and universities. 
Each of these neural networks come in a variety of 

depth, so the developer can select the most appropriate for their specific requirements.  

Image Augmentation 
Neural Networks are far more performant than comparable machine learning algorithms… 
assuming that training data is plentiful. However in image classification problems, training data 
can be a rare resource. A common 
workaround for this problem is to generate 
more training images from the existing 
images. The compilation of photos on the 
right shows how multiple images can be 
generated from the same, base image.  
 
Common transformations are to rotate, 
sheer, blur, and flip the images. Other 
operations can act on the color scheme, by 
brightening, darkening, or inverting the 
pixels. All these operations can be applied 
randomly together. 
 
Training a CNN on extra, augmented data 
exposes the model to a more varied dataset. In our project, we explored the effect these 
transformations have on the accuracy of the Neural Network. 
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Data Summary 

Data source 
Our dataset is curated from Google, with a total of roughly 800 images and 4 classes. We 
collected the images using a Firefox browser plugin to download the image results for each 
president. We then combed through the image files to remove any obvious duplicates or 
corrupted files. Images from the same event (press conferences, campaign rallies) were left in 
the dataset. The images are of varying color schemes, perspectives, and focal points. In the 
sample below, one can gauge the high variance of the dataset. 

Data attributes 
The observations of our dataset are individual JPEG image files. 
Each image is represented as a three-dimensional array of 
integers ranging from 0 to 255, where each integer represents an 
individual pixel's intensity. The color channels of red, blue, and 
green correspond to the three dimensions. The values in each of 
the three arrays correspond to the intensity of each of the colors (0 
meaning not present, and 255 meaning fully present). The 
animation shown to the right visualizes the process of mapping the 
pixels to integers. The process shown is repeated for each of the 
three color channels. Any non-JPEG images in our dataset were 
converted to JPEG format using the native file converter in Mac OS. 

Methods 

Transfer Learning from Various Source Models 
Typically, image recognition through deep learning requires a great deal of data points. Because 
we manually gathered our data, it was not feasible to amass enough images to train a decent 
neural network from scratch. We turned to transfer learning to resolve this issue. We chose to 
compare results from the three most popular pretrained image recognition models: ResNet50 by 
Microsoft, VGG-16 by Oxford University, and InceptionV3 by Google. These models have all 
been trained on ImageNet, the largest publicly available dataset comprised of labeled images.  
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Our transfer learning process starts with loading a source model via the Keras ​Applications​ API 
and freezing its layers, making the parameters for those layers untrainable. Then, we added a 
fully connected layer with ReLu activation followed by a dropout layer to curb overfitting. Finally, 
we added a fully connected output layer with softmax activation and 4 nodes to accommodate 
the 4 presidents we wish to predict among.  
 
We employed stratified sampling to split our data into 600 and 200 images for the train and test 
sets, respectively. We fit the models over the course of 30 epochs before evaluating them. The 
comparison between the models is displayed in Table 1. 

 
Table 1: Source Model Comparison 

Source 
Model 

Parameters 
in source 

model 

Trainable 
Parameters 
in complete 

model 

Source 
model load 

time (s) 

Complete 
model train 

time 
(minutes) 

Validation 
Accuracy 

VGG-16 14,714,688 6,423,812 1.01 12.276 0.760 

Inception V3 21,802,784 13,108,484 12.41 12.089 0.440 

ResNet-50 23,587,712 525,572 11.64 12.040 0.260 

 
The factors we can considered were the time to load into the environment, time to train on the 
data, and validation accuracy on the final epoch. Please note that we trained our models using a 
GPU-configured EC2 instance provided by AWS, so our runtimes are low relative to the 
intensive computations being performed. We can see that all of the source models resulted in 
similar training times, so we focused on the other metrics. VGG-16 was the best fit model, 
having achieved a validation accuracy much higher than its more complicated counterparts. 
Additionally, it took the least amount of time to load due to its relatively simple architecture. We 
continued the rest of our project using only VGG-16.  

Training with Various Dataset Sizes and Augmentations 
Our next step was investigating the effects of image augmentation and training set size on 
model performance. We trained the models on sets of 100, 200, 400, and 600 images, all of 
which had balanced amounts of classes. We also trained each model with and without image 
augmentations applied to the training sets to give us a total of 8 models to compare. Table 2 
shows the training time, validation accuracy, and validation loss of all the tested training set 
sizes. Our loss function for model training was classification cross-entropy. 
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Table 2: Performance of VGG-16 
 Training Images 

(per class) 
Train time 
(minutes) 

Validation 
Accuracy 

Validation  
Loss 

 
 

Augmented 

25 4.58 0.580 1.280 

50 5.30 0.620 1.306 

100 8.32 0.710 1.003 

150 12.4 0.760 0.761 

 
 

Not 
Augmented 

25 4.47 0.345 8.801 

50 5.44 0.570 1.343 

100 6.82 0.690 1.067 

150 9.76 0.760 0.8935 

 
There is a clear improvement in accuracy with a larger training set, for both image cases, even 
with the longer training time. The augmented images also performed better in the testing, with a 
significantly lower validation loss.  
 

Conclusions 
The process of deep learning with images excels due to the extensive possibilities with data 
preprocessing and modeling. VGG-16, despite its drawbacks in training time, has shown to be a 
powerful source model using in transfer learning in the industry today. In our model comparison, 
VGG-16 was the quickest to load and had the highest validation accuracy. ​This is as expected, 
since VGG-16 is characterized by lesser layers and greater depth in the neural network to prove 
better results. Validation accuracy is also discernibly better with augmentations to the data and 
more points in the training data. Figure 3 is a visual comparison of the different models we 
implemented with these variant cases. We have reason to conclude that training set size and 
certain augmentations are important in creating a quality model in image classification.  
 

Figure 3: Model Accuracy 
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Past Difficulties and Future Work 

Difficulties 
The majority of our difficulties stemmed from development and operations work: principally from 
our attempts to integrate standard deep-learning Python libraries such as Keras or Tensorflow 
with Apache Spark. It is possible to combine the two tools through the tensorframes and 
spark-deep-learning libraries, but correctly configuring those libraries is a very time-consuming 
process. The bulk of our efforts in the first two weeks were spent configuring our local and 
remote environments.  
 
Once the libraries were configured, our team was limited by the computing power of our 
hardware. Although the CNN featurizer was trained, training our classifiers was still a long 
process due to the fact that each observation contains a massive amount of data. Unlike a 
typical classification data with simple tabular data, every observation in this project was a large 
JPEG image file. Spark is typically used on a cluster... however we were using Spark’s local 
compute setting, so the communication costs between the master and the executors was not 
worthwhile. 
 
Finally, our team abandoned Spark altogether in favor of using Keras on a GPU-configured EC2 
instance on Amazon Web Services. The results and methods detailed in this report are all from 
that final attempt. 

Future Work 
If time had allowed, we would have investigated the performance of a model transfer learned 
from a source model trained on a facial images rather than the less focused scope of ImageNet. 
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